Min–max minimal hypersurfaces with obstacle
نویسندگان
چکیده
We study min–max theory for the area functional among hypersurfaces constrained in a smooth manifold with boundary. A Schoen–Simon-type regularity result is proved integral varifolds which satisfy variational inequality and restricts to stable minimal hypersurface interior. Based on this, we show that any admissible family of sweepouts $$\Pi $$ compact boundary, there always exists closed $$C^{1,1}$$ codimension $$\ge 7$$ singular set interior having mean curvature pointing outward along boundary realizing width $$\mathbf {L}(\Pi )$$ .
منابع مشابه
Minimal Hypersurfaces with Bounded Index
We prove a structural theorem that provides a precise local picture of how a sequence of closed embedded minimal hypersurfaces with uniformly bounded index (and volume if the ambient dimension is greater than three) in a Riemannian manifold (M, g), 3 ≤ n ≤ 7, can degenerate. Loosely speaking, our results show that embedded minimal hypersurfaces with bounded index behave qualitatively like embed...
متن کاملMinimal Hypersurfaces with Finite Index
In an article of Cao-Shen-Zhu [C-S-Z], they proved that a complete, immersed, stable minimal hypersurface M of R with n ≥ 3 must have only one end. When n = 2, it was proved independently by do Carmo-Peng [dC-P] and FischerColbrie-Schoen [FC-S] that a complete, immersed, oriented stable minimal surface in R must be a plane. Later Gulliver [G] and Fischer-Colbrie [FC] proved that if a complete, ...
متن کاملSystolic Inequalities and Minimal Hypersurfaces
We give a short proof of the systolic inequality for the n-dimensional torus. The proof uses minimal hypersurfaces. It is based on the Schoen-Yau proof that an n-dimensional torus admits no metric of positive scalar curvature. In this paper, we give a short new proof of the systolic inequality for the ndimensional torus. Theorem 1. Let (T , g) be a Riemannian metric on the n-dimensional torus. ...
متن کاملPositive Scalar Curvature and Minimal Hypersurfaces
We show that the minimal hypersurface method of Schoen and Yau can be used for the “quantitative” study of positive scalar curvature. More precisely, we show that if a manifold admits a metric g with sg ≥ |T | or sg ≥ |W |, where sg is the scalar curvature of of g, T any 2-tensor on M and W the Weyl tensor of g, then any closed orientable stable minimal (totally geodesic in the second case) hyp...
متن کاملRigidity of minimal hypersurfaces of spheres with two principal curvatures
Let ν be a unit normal vector field along M . Notice that ν : M −→ S satisfies that 〈ν(m),m〉 = 0. For any tangent vector v ∈ TmM , m ∈ M , the shape operator A is given by A(v) = −∇̄vν, where ∇̄ denotes the Levi Civita connection in S. For every m ∈ M , A(m) defines a linear symmetric transformation from TmM to TmM ; the eigenvalues of this transformation are known as the principal curvatures of ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Calculus of Variations and Partial Differential Equations
سال: 2022
ISSN: ['0944-2669', '1432-0835']
DOI: https://doi.org/10.1007/s00526-022-02270-z